PROJECT#2 Coefficients of Hermite polynomials by recursion relation Eq.(4-16)

Name: Ryota Takei

ID: 995184594

1. Purpose

By using the Eq.(4-16), we try to get Hermite polynomials.

2. Introduction

$$\begin{cases} a_{n+1,k} = 2a_{n,k-1} - 2na_{n-1,k} & \text{where } k > 0 \\ a_{n+1,k} = -2na_{n-1,k} & \text{where } k = 0 \end{cases}$$
 Eq.(4-16)

By defining coefficients $a_{0,0} = 1$, $a_{1,0} = 0$, and $a_{1,1} = 2$ and using the Eq.(4-16), we get Hermite polynomials.

Suppose Hermite polynomials are expressed as $H_n(\rho) = \sum_{k=0,1}^n a_{n,k} \rho^k$.

3. Result

$\left[H_{0}(ho) \right]$		[1	0	0	0	0	0	0	$\begin{bmatrix} 1 \end{bmatrix}$
$H_1(\rho)$		0	2	0	0	0	0	0	ρ
$H_2(\rho)$		-2	0	4	0	0	0	0	$ ho^2 $
$H_3(\rho)$	=	0	-12	0	8	0	0	0	ρ^{3}
$H_4(ho)$		12	0	-48	0	16	0	0	ρ^4
$H_5(\rho)$		0	120	0	-160	0	32	0	ρ^{5}
$H_6(\rho)$		-120	0	720	0	-480	0	64	$ ho^{_6}$

These $Hn(\rho)$ agree with ones on the text book for n=0 to 5..

We cannot get $|a_{n,k}|$ over 16 decimal digits because of the double precision..

Fig.1 shows $Hn(\rho)/n^3$ for n=1 to 6.

By plugging $Hn(\rho)$ into the equation below, we get one-dimensional harmonic oscillator wave functions.

$$\Psi_n(\rho) = \frac{1}{\sqrt{2^n n \sqrt{\pi}}} e^{-\frac{\rho^2}{2}} H_n(\rho)$$

Fig.2 shows $\Psi_n(\rho)$ for n=0 to 3 and agrees with Fig. 4-2 on the textbook.

Fig.1 Hermite polynomials divided by n^3 for n=0 to 6.

Fig.2 One-dimensional harmonic oscillator wave functions $\Psi n(\rho)$ for n=0 to 3.

As n becomes large, particle behaves as classic pendulum because it spends most of time at the ends.

Fig.3 Pribability $|\Psi n(\rho)|^2$ for n=1,3,5,10, and 20.

4.Reference

[1] The textbook

Samuel SM Wong. *Computational Methods in Physics and Engineering 2nd edition*. World Scientific Publishin Co. Pte. Ltd, 1997.